Neuroprotective effects of carvedilol, a new antihypertensive agent, in cultured rat cerebellar neurons and in gerbil global brain ischemia.

نویسندگان

  • P G Lysko
  • K A Lysko
  • T L Yue
  • C L Webb
  • J L Gu
  • G Feuerstein
چکیده

BACKGROUND AND PURPOSE Free radical generation mediates part of the ischemic neuronal damage caused by the excitatory amino acid glutamate. Carvedilol, a novel multiple-action antihypertensive agent, has been shown to scavenge free radicals and inhibit lipid peroxidation in swine heart and rat brain homogenates. Therefore, we studied the neuroprotective effect of carvedilol on cultured cerebellar neurons and on CA1 hippocampal neurons of gerbils exposed to brain ischemia. METHODS Neuroprotective mechanisms were studied using an in vitro ischemia model of cultured rat cerebellar granule cell neurons exposed to either glutamate or oxygen free radical-generating systems. Prevention of lipid peroxidation by carvedilol was studied by measuring the formation of thiobarbituric acid-reactive substance. Gerbil CA1 neuron survival was examined by direct neuronal count 7 days after 6 minutes of global ischemia with reperfusion. RESULTS Carvedilol protected cultured neurons in a dose-dependent manner against glutamate-mediated excitotoxicity (inhibitory concentration [IC50] = 1.1 microM) as well as against a 20-minute oxidative challenge (IC50 = 5 microM). The IC50 against the oxidative challenge was lowered to 1.3 microM by growing neurons for 24 hours in the presence of carvedilol. At 10 microM carvedilol inhibited lipid peroxidation 50% and 73% (n = 4, p < 0.001) in neurons exposed to two different free radical-generating systems. Neuroprotection of 52% (n = 22, p = 0.009 versus vehicle) of gerbil CA1 hippocampal neurons was achieved by pretreatment and posttreatment with subcutaneous injection of 3 mg/kg carvedilol twice a day for 4 and 3 days, respectively. CONCLUSIONS Carvedilol provided neuroprotection in both in vitro and in vivo models of neuroinjury, where oxygen radicals are likely to play an important role. Therefore, carvedilol may reduce the risk of cerebral ischemia and stroke by virtue of both its antihypertensive action and its antioxidative properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuroprotective mechanism of (+)SKF 10,047 in vitro and in gerbil global brain ischemia.

BACKGROUND AND PURPOSE The N-methyl-D-aspartate receptor is believed to mediate part of the ischemic neuronal damage caused by the excitatory amino acid glutamate. (+)SKF 10,047, the prototypic sigma-agonist, interacts with the N-methyl-D-aspartate receptor. Therefore, we studied the neuroprotective effect of (+)SKF 10,047 on cultured rat cerebellar neurons and on CA1 hippocampal neurons of ger...

متن کامل

Neuroprotective effects of tetrodotoxin as a Na+ channel modulator and glutamate release inhibitor in cultured rat cerebellar neurons and in gerbil global brain ischemia.

BACKGROUND AND PURPOSE Studies examining the role of tetrodotoxin-sensitive ion channels in hypoxic-ischemic neuronal damage have concluded that sodium influx is an important initiating event. We examined the neuroprotectant effect of tetrodotoxin on both cultured cerebellar neurons and on CA1 hippocampal neurons of gerbils exposed to brain ischemia. METHODS We studied neuroprotective mechani...

متن کامل

Neuroprotective effects of SKF 10,047 in cultured rat cerebellar neurons and in gerbil global brain ischemia.

BACKGROUND AND PURPOSE Excitatory amino acids and their receptors are involved in mediating ischemic neuronal damage. The sigma-agonists are believed to interact with the N-methyl-D-aspartate receptor. Therefore, we studied the neuroprotective, hypothermic, and motor deficit effects of the sigma-agonist SKF 10,047 and the N-methyl-D-aspartate antagonist MK-801. METHODS Neuroprotective effects...

متن کامل

Neuroprotective effects of crocin on the histopathological alterations following brain ischemia-reperfusion injury in rat

Objective(s): Some histopathological alterations take place in the ischemic regions following brain ischemia. Recent studies have demonstrated some neuroprotective roles of crocin in different models of experimental cerebral ischemia. Here, we investigated the probable neuroprotective effects of crocin on the brain infarction and histopathological changes after transient model of focal cerebral...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Stroke

دوره 23 11  شماره 

صفحات  -

تاریخ انتشار 1992